Associate Professor
home>> Associate ProfessorLi Yingzi
Tel.:0311-80787200
Office:School of Mathematical Sciences
E-mail: lyzxbb@sina.com
Personal Website:None
Personal Profile:
Education
(1) Bachelor's degree, inMathematics, Hebei Normal University, 1990.09 - 1994.06
(2) Master's degree, in BasicMathematics, Hebei Normal University, 1994.09 - 1997.06
Work Experience
(1) Teaching Assistant,School of Mathematical Sciences, Hebei Normal University, 1997.07 - 2000.07
(2) Lecturer, Schoolof Mathematical Sciences, Hebei Normal University, 2000.08 - 2014.11
(3) AssociateProfessor, School of Mathematical Sciences, Hebei Normal University, 2014.12 - present
Publications
Journal papers
[1] Li Yingzi, Ding Ren. Arrangements of Semicircleson S1. Advances in Mathematics (China). 1997, 26(5): 471-473.
[2] Li Yingzi, Yang Ge, Meng Zhaojin. Methods ofConstructing Arrangements of Open Semicircles. Journal of Hebei NormalUniversity . 2006, 30(3): 253-255.
[3] Li Yingzi, Yang Ge, Meng Zhaojin. Number of Arrangementsof Open Semicircles. Journal of Hebei University. 2006, 26(5):460-462, 468.
[4] Li Yingzi, Li Jianguo. The Weights of the Edgesin Arrangements of Open Semicircles. Journal of Hebei Normal University. 2002,26(4): 345-348.
[5] Li Yingzi, Yang Ge, Gao Chunxue. A Note on theMénage Problem. Journal of Hebei University of Technology. 2006, 35(3): 34-35.
[6]Chang Zhikui, Li Yingzi (Corresponding Author). The Number of D-points on a Line in the Tiling . Journal ofMathematics (PRC). 2013, 33(2): 359-362.
[7] Ding Ren, Li Yingzi, Xu Changqing. A Note onHausdorff Distance. Journal of Mathematical Research & Exposition. 2000,20(4): 511-514.
[8] Ren Ding, Yingzi Li, Changqing Xu and LipingYuan. Some Combinatorial Results about Face-lattices of Four-dimensional ConvexPolytopes. Romanian Journal of Pure and Applied Mathematics. 2005, 50(5-6):585-593.
[9]Ding Ren, Xu Changqing, Li Yingzi. A Note on City Block Distance. AppliedMathematics-A journal of Chinese Universities. 1998, 13(3): 331-334.
[10]Xu Changqing, Zhang Gengsheng, Li Yingzi. A Necessary and Sufficient Conditionfor a Partial Geometry to Satisfy Pasch’s Axiom. Journal of Hebei Normal University. 1997, 21(2): 135-136.
[11]Yang Ge, Li Yingzi. Strong Converse Inequality for the Modified Baskakov TypeOperators. Journal of Hebei Normal University.2004, 28(5): 448-451.
[12] Yang Ge, Li Yingzi.Converse Theory on Szász-Durrmeye Operators. Journal of ShijiazhuangRailway Institute. 2007,20(1): 69-71.
Detailed introduction: