Professor
home>> ProfessorKui Ji
Tel.:
Office:
E-mail:
Personal Website:
Personal Profile:
Research Interest: Operator Theory
Academic qualifications:
(1)Doctor,operator theory and operator algebra, Hebei Normal University, 2005-2008
(2)Master,operator theory and operator algebra, Hebei University of technology, 2002-2005
(3)Bachelorof mathematics, Liaocheng University, 1998-2002
Professional training and Positionsheld:
(1)Lecture, Department of Mathematics, Hebei NormalUniversity, since 2008
(2)Associate professor, Departmentof Mathematics, Hebei Normal University, since 2012
(3)Professor, Department ofMathematics, Hebei Normal University, since 2015
Visit:
(1)Visiting scholar, FieldsInstitute (Canada), 2007
(2)Visiting scholar, University ofPuerto Rico (USA), 2009
(3)National public visitingscholar, Indian Institute of Science (India); 2012
(4)Complex Geometry and OperatorTheory,Indian Statistical Institute(India),2015
(5)IWOTA(2023),University ofHelsinki (Finland), 2023
Publications
Preprints
(1) Ji,Kui, Ji, Shanshan,Keshari,Dinesh Kumar ,and Xu, Jing, On the similarity of restriction of the operator toan invariant subspace, arXiv:2012.13535.
(2)Ji, Kui, Ji, Shanshan,Kwon, Hyun-Kyoung and Xu, Jing, TheCowen-Douglas theory for operator tuples and similarity, arXiv:2210.00209.
(3) Ji,Kui, Ji, Shanshan and Xu,Jing, Geometry of holomorphic vector bundles and similarity of commutingoperator tuples II, in prepare.
(4)Ji, Kui, Ji, Shanshan and Xu,Jing, The Cowen-Douglas theory for operator tuples and similarity II, inprepare.
(5)Ji,Kui, Ji, Shanshan, Kwon,, Hyun-Kyoung Liu, Xiaoceng and Xu, Jing, On the metric of the jet bundleand similarity of multiplication operators on Dirichlet spaces,arXiv:2401.13281.
(6)Ji, Kui and Xu, Jing, K-theoryand similarity of Cowen Douglas operator tuples, in prepare.
(7)Xie, Yufang , Ji, Kui, TheCowen-Douglas operators with strongly flag structure,arXiv:2311.15491.
(8)Yang, Jianming , Ji, Kui, On thesimilarity of powers of operators with flag structure,arXiv:2312.16459.
Journal papers
(1)Jiang, Chunlan, Guo, Xianzhou,and Ji, Kui., K-group and similarity classification of operators. J.Funct.Anal. 225 (2005), no.1 , 167--192.
(2)Jiang, Chunlan , Ji, Kui.Similarity classification of holomorphic curves. Adv. Math. 215 (2007), no.2 ,446--468.
(3)He, Hua ,Ji, Kui., Stronglyirreducible decomposition and similarity classification of operators. Illinois.J. Math 51 (2007), no.2, 409—428.
(4)Ji, Kui , Jiang, Chunlan, Acomplete classification of AI algebra with the ideal property, Canada. J. Math.63, No.2,381-412 (2011).
(5)Ji, Kui, Similarityclassification and properties of some extended holomorphic curves. Integral Equations and Operator Theory 69 (2011), no.1,133–148.
(6)Jiang, Chunlan; Ji, Kui .Theoryof strongly irreducible operators and its applications. Adv. Math.《数学进展》(China)40 (2011), no.4, 385–392.
(7)Ji Kui, Shi Rui, Similarity ofmultiplication operators on the Sobolev disk algebra. Acta. Math. Sin. (Engl.Ser.)29 (2013), no.4, 789–800.
(8)Ji Kui, On a generalization ofB_1(\Omega) on C*-algebras, Proc. Indian Acad. Sci. Math. Sci. Vol 124. no.2.May (2014),243-253.
(9)Ji, Kui, Jiang, Chunlan,Keshari,Dinesh Kumar, Misra, Gadadhar, Flag structure for operators in theCowen-Douglas class, C.R.Acad.Sci.Paris.Ser. I, 352 (2014) 511-514.
(10)Hou, Yingli and Ji, Kui On theextended holomorphic curves on C* algebras. Oper. Matrices 8 (2014), no. 4,999–1011.
(11)Dai, Hong; Hou, Yingli and Ji,Kui A note on curvature and similarity of some CowenDouglas operators. J. Math.Anal.Appl. 444 (2016), no.1, 167–181.
(12)Hou, Yingli; Ji, Kui and Kwon,HyunKyoung The trace of the curvature determines similarity. Stud. Math.236,no.2, 193-200 (2017).
(13)Ji, Kui;Jiang, Chunlan;Keshari, Dinesh Kumar; Misra, Gadadhar, Rigidity of the flag structure for aclass of Cowen-Douglas operators. J. Funct. Anal. 272 (2017), no.7, 2899–2932.
(14)Jiang, Chunlan; Ji, Kui; Misra,Gadadhar , Classification of quasihomogeneous holomorphic curves and operatorsin the Cowen-Douglas class. J. Funct. Anal. 273 (2017), no.9,2870–2915.
(15)Ji, Kui. Curvature formulas ofholomorphic curves on C*-algebras and Cowen-Douglas operators. Complex Anal. Oper. Theory 13 (2019), no.4,1609–1642.
(16)Ji,Kui; Sarkar, Jaydeb; Similarity of quotientHilbert modules in the Cowen–Douglasclass, European Journal ofMathematics,5 (2019), no.4, 1331–1351.
(17)Tian, Liang, Guo, Wei and Ji,Kui, A note on a subclass of Cowen-Douglas operators, Acta Mathematica Sinica,English Series, 35 (2019), no.11, 1795–1806.
(18)Ji, Kui; Kwon,Hyun-Kyoung; Xu, Jing, N-hypercontractivity and similarityof Cowen-Douglas operators, Linear Algebra Appl. 592 (2020), no. 1, 20–47.
(19)Jiang, Chunlan, Ji, Kui,Integral curvature and similarity of Cowen-DouglasOperators, In: Curto R.E.,Helton W., Lin H., Tang X., Yang R., Yu G. (eds)Operator Theory,OperatorAlgebrasand Their Interactions with Geometry and Topology. Operator Theory:Advances and Applications, 278 (2020),373-390.
(20)Ma,Zhenhua, Ji, Kui and Li,Yucheng, Compact operators under Orlicz functions, Indian Journal of Pure andApplied Mathematics, 51(2020), no.4, 1633–1649.
(21)Hou, Yingli, Ji, Kui and Zhao,Linlin, Factorization of generalizedholomorphic curve and homogeneity of operators, Banach. J. Math. Anal. 15(2021), no. 2, Paper No. 43, 23 pp.
(22)Jiang, Chunlan, Ji, Kui and Wu,Jinsong, Similarity Invariants of Essentially normal Cowen-Douglas Operatorsand Chern Polynomials , Israel Journal of Mathematics,248,(2022)229–270.
(23)Ji,Kui and Ji, Shanshan, Themetrics of Hermitian holomorphic vector bundles and the similarity ofCowen-Douglas operators,Indian Journal of Pure and Applied Mathematics, 53(2022), no. 3, 736–749.
(24)Ji, Kui; Kwon,Hyun-Kyoung;Sarkar, Jaydeb; Xu, Jing, A subclass of the Cowen-Douglas class and similarity,Mathematische Nachrichten, 295(2022), no.11, 2197–2222.
(25)Ji,Kui and Ji, Shanshan, A noteon unitary equivalence of operators acting onreproducing kernel Hilbert spaces,Houston Journal of Mathematics, 48(2022),no.1,125-148.
(26)Jiang,Chunlan, Ji, Kui ;Keshari,Dinesh Kumar; Geometric Similarity invariants of Cowen-DouglasOperators, Journal of Noncommutative Geometry, 17(2023),no.2,pp.573-608.
(27)Hou, Yingli, Ji, Kui, Ji,Shanshan and Xu, Jing, Geometry of holomorphic vector bundles and similarity ofcommuting operator tuples, Journal of Operator Theory, 91(2024), no.1, 169-202.
(28)Jiang,Chunlan, Fang, Junshengand Ji Kui, Cowen Douglas operators and the third of Halmos' tenproblems,Israel Journal of Mathematics, to appear.
Detailed introduction: