
数学系
当前位置:太阳成集团tyc9728>>师资队伍>>在职教工>>数学系纪奎
职称/职务:教授
来校时间:2008年
E-mail:jikuikui@163.com jikui@hebtu.edu.cn
研究领域:泛函分析(算子理论)
个人简介:
1981年4月23日出生,男,汉族,山东省郯城县人。理学博士,博士生导师。主要从事复几何在线性算子理论中的应用方面的研究,研究内容包括Cowen-Douglas算子(组)与Hermitian全纯向量丛的结构与分类问题,包括利用几何不变量刻画算子的酉分类与相似分类、Cowen-Douglas 理论在C*代数中的拓展与应用、算子(组)的相似分类与Corona问题等。相关成果被Advances in Mathematics、Journal of Functional Analysis、IsraelJournal of Mathematics、Journal of NoncommutativeGeometry、Journal of Operator Theory、Canadian Journal of Mathematics、IllinoisJournal of Mathematics、European Journal of Mathematics、Studia Mathematica等数学期刊发表,并在应邀在2018年度、2023年度IWOTA(国际算子理论会议)作学术报告。
教育经历:
(1)2005-09至2008-08,河北师范大学,基础数学,博士
(2)2002-09至2005-06,河北工业大学,应用数学,硕士
(3)1998-09至2002-06,聊城大学,数学教育,学士
工作经历:
(1)2015-12至今,河北师范大学,太阳成集团tyc9728,教授
(2)2012-01-2015-12,河北师范大学,太阳成集团tyc9728,副教授
(3)2008-08至2011-12,河北师范大学,数学与信息科学学院,讲师
访问经历:
(1)2007-06-2007-12访问学者,菲尔兹研究所(加拿大)
(2)2009-06-2009-12访问学者,波多黎各大学(美国)
(3)2011-12-2012-01国家公派访问学者,IISC (印度)
教学情况:
本科生课程:《高等数学》、《数学分析》、《复变函数》、《线性代数》、《分析方法选讲》;
研究生课程:《算子理论》、《C*代数》、《复几何与算子理论》
主持和参与的科研项目:
(1)国家自然科学基金青年基金:算子代数的分类,批准号:10901046,2010-2012(已结题);主持人
(2)国家自然科学基金面上项目:曲率,第二基本形式与几何算子的相似性的研究,批准号:11471094,2015-2018(已结题)主持人;
(3)高等学校全国百篇优秀博士学位论文作者专项资金,2010-2012,(已结题)主持人;
(4)河北省杰出青年基金;拟齐次曲线的相似分类,批准号:A2016205219,2016-2018(已结题)主持人;
(5)河北省2014年青年拔尖人才;复几何在算子代数中的应用,批准号BJ2014037,2015-2017,(已结题)主持人;
(6)国家自然科学基金重点项目:算子代数中的几何与分类理论,批准号11831006,2019-2023, (已结题) 参与人;
(7)国家自然科学基金优秀青年基金项目:算子理论与算子代数,批准号:11922108,2020-2022(已结题)主持人;
(8)国家自然科学基金重点国际(地区)合作研究项目:单的与非单的顺从代数的分类及其应,批准号:11920101001,2020-2024(在研)参与人;
(9) 国家自然科学基金面上项目:Cowen-Douglas算子组的相似不变量,批准号:12371129,2024-2027(在研)主持人.
科研获奖:
(1) 2010年度全国百篇优秀博士论文(1/1)
(2) 2013年度教育部高等学校自然科学研究优秀成果奖二等奖(2/2)
发表论文:
(1)Jiang,Chunlan, Guo, Xianzhou, and Ji, Kui., K-group and similarity classification ofoperators. J. Funct.Anal. 225 (2005), no.1 , 167--192.
(2)Jiang,Chunlan and Ji, Kui. Similarity classification of holomorphic curves. Adv.Math. 215 (2007), no.2 , 446--468.
(3)He, Hua andJi, Kui., Strongly irreducible decomposition and similarity classification ofoperators. Illinois. J. Math 51 (2007), no.2, 409—428.
(4)Ji, Kui andJiang, Chunlan, A complete classification of AI algebra with the ideal property,Canada. J. Math. 63, No.2,381-412 (2011).
(5)Ji, Kui,Similarity classification and properties of some extended holomorphiccurves. Integral Equations and OperatorTheory 69 (2011), no.1,133–148.
(6)Jiang,Chunlan; Ji, Kui .Theory of strongly irreducible operators and itsapplications. Adv. Math.《数学进展》(China)40 (2011), no.4,385–392.
(7)Ji Kui, ShiRui, Similarity of multiplication operators on the Sobolev disk algebra. Acta.Math. Sin. (Engl. Ser.)29 (2013), no.4, 789–800.
(8)Ji Kui, On ageneralization of B_1(\Omega) on C*-algebras, Proc. Indian Acad. Sci. Math.Sci. Vol 124. no.2. May (2014),243-253.
(9)Ji, Kui,Jiang, Chunlan, Dinesh Kumar Keshari, Gadadhar Misra, Flag structure foroperators in the Cowen-Douglas class, C.R.Acad.Sci.Paris.Ser. I, 352 (2014)511-514.
(10)Hou, Yingliand Ji, Kui On the extended holomorphic curves on C* algebras. Oper. Matrices 8(2014), no. 4,999–1011.
(11)Dai, Hong;Hou, Yingli and Ji, Kui A note on curvature and similarity of some CowenDouglasoperators. J. Math. Anal.Appl. 444 (2016), no.1, 167–181.
(12)Hou, Yingli;Ji, Kui and Kwon, HyunKyoung The trace of the curvature determines similarity.Stud. Math.236, no.2, 193-200 (2017).
(13)Ji, Kui,Jiang, Chunlan, Dinesh Kumar Keshari, Gadadhar Misra, Rigidity of the flagstructure for a class of Cowen-Douglas operators. J. Funct. Anal. 272 (2017),no.7, 2899–2932.
(14)Jiang,Chunlan, Ji, Kui, Gadadhar Misra, Classification of quasihomogeneousholomorphic curves and operators in the Cowen-Douglas class. J. Funct. Anal.273 (2017), no.9,2870–2915.
(15)Ji, Kui.Curvature formulas of holomorphic curves on C*-algebras and Cowen-Douglasoperators. Complex Anal. Oper. Theory 13(2019), no.4, 1609–1642.
(16)Ji,KuiJaydeb Sarkar, Similarity of quotient Hilbert modules in the Cowen–Douglasclass, European Journal of Mathematics,5 (2019), no.4, 1331–1351.
(17)Tian, Liang,Guo, Wei and Ji, Kui, A note on a subclass of Cowen-Douglas operators, ActaMathematica Sinica, English Series, 35 (2019), no.11, 1795–1806.
(18)Ji, Kui,Hyun-Kyoung Kwon, and Xu, Jing, N-hypercontractivity and similarity ofCowen-Douglas operators, Linear Algebra Appl. 592 (2020), no. 1, 20–47.
(19)Jiang,Chunlan, Ji, Kui, Integral curvature and similarity of Cowen-DouglasOperators,In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds)OperatorTheory,Operator Algebrasand Their Interactions with Geometry and Topology.Operator Theory: Advances and Applications, 278 (2020),373-390.
(20)Ma,Zhenhua,Ji, Kui and Li, Yucheng, Compact operators under Orlicz functions, IndianJournal of Pure and Applied Mathematics, 51(2020), no.4, 1633–1649.
(21)Hou, Yingli,Ji, Kui and Zhao, Linlin, Factorizationof generalized holomorphic curve and homogeneity of operators, Banach. J. Math.Anal. 15 (2021), no. 2, Paper No. 43, 23 pp.
(22)Jiang,Chunlan, Ji, Kui and Wu, Jinsong, Similarity Invariants of Essentially normalCowen-Douglas Operators and Chern Polynomials , Israel Journal ofMathematics,248,(2022)229–270.
(23)Ji,Kui andJi, Shanshan, The metrics of Hermitian holomorphic vector bundles and thesimilarity of Cowen-Douglas operators,Indian Journal of Pure and AppliedMathematics, 53 (2022), no. 3, 736–749.
(24)Ji, Kui,Hyun-Kyoung Kwon, Jaydeb Sarkar,and Xu, Jing, A subclass of the Cowen-Douglasclass and similarity, Mathematische Nachrichten, 295(2022), no.11, 2197–2222.
(25)Ji,Kui andJi, Shanshan, A note on unitary equivalence of operators acting onreproducingkernel Hilbert spaces, Houston Journal of Mathematics, 48(2022),no.1,125-148.
(26)Jiang,Chunlan,Ji, Kui and Dinesh Kumar Keshari, Geometric Similarity invariants ofCowen-Douglas Operators, Journal of Noncommutative Geometry,17(2023),no.2,pp.573-608.
(27)Hou, Yingli,Ji, Kui, Ji, Shanshan and Xu, Jing, Geometry of holomorphic vector bundles andsimilarity of commuting operator tuples, Journal of Operator Theory, 91(2024),no.1, 169-202.
(28)Jiang,Chunlan,Fang, Junsheng and Ji Kui, Cowen Douglas operators and the third of Halmos' tenproblems,Israel Journal of Mathematics, to appear.
(29) Ji,Kui, Ji,Shanshan,Dinesh Kumar Keshari,and Xu, Jing, On the similarity of restriction ofthe operator to an invariant subspace, arXiv:2012.13535.
(30)Ji, Kui, Ji,Shanshan, Hyun-Kyoung Kwon and Xu, Jing, The Cowen-Douglas theory for operatortuples and similarity, arXiv:2210.00209.
(31) Ji,Kui, Ji,Shanshan and Xu, Jing, Geometry of holomorphic vector bundles and similarity ofcommuting operator tuples II, in prepare.
(32)Ji, Kui, Ji,Shanshan and Xu, Jing, The Cowen-Douglas theory for operator tuples andsimilarity II, in prepare.
(33)Ji,Kui, Ji,Shanshan, Hyun-Kyoung Kwon, Liu, Xiaoceng and Xu, Jing, On the metric of the jet bundle and similarity ofmultiplication operators on Dirichlet spaces,arXiv:2401.13281.
(34)Ji, Kui andXu, Jing, K-theory and similarity of Cowen Douglas operator tuples, in prepare.
(35)Xie, Yufangand Ji, Kui, The Cowen-Douglas operators with strongly flagstructure,arXiv:2311.15491.
(36)Yang,Jianming and Ji, Kui, On the similarity of powers of operators with flagstructure,arXiv:2312.16459.
详细介绍: